Атомный форсажный авиационный двигатель

миниатюра 17

Изобретение относится к авиадвигателестроению.
Предложенное техническое решение (фиг. 1) содержит газотурбинный двигатель ГТД 1, который выполнен двухвальным и двухконтурным и содержит внутренний вал 2 и внешний вал 3, первый контур 4, второй контур 5, вентилятор 6, компрессор низкого давления 7 и компрессор высокого давления 8, далее расположены камера сгорания 9, турбина 10, содержащую в свою очередь сопловой аппарат 11 и рабочее колесо 12, далее находится реактивное сопло 13 с обтекателем 14. Газотурбинный двигатель 1 содержит систему топливоподачи с топливным насосом 15 и приводом топливного насоса 16, топливный трубопроводы 17 и далее камера сгорания 9.
Отличительной особенностью силовой установки является наличие двигателя Стирлинга 18 за турбиной 10, т. е. за ее рабочим колесом 12.
Двигатель Стирлинга 18 состоит из двух частей: группы рабочих цилиндров 19 и группы расширительных цилиндров 20, которые соединены трубопроводами 21. Группу расширительных цилиндров 20 предпочтительно установить вне газового тракта ГТД, на-пример, полностью или частично в обтекателе 14.

Рис.1
На фиг. 2 и 3 приведена схема одного из вариантов исполнения двигателя Стирлинга 18, который содержит группу рабочих цилиндров 19, имеющих оребрение 22 с установленным внутри каждого из них в полости «Б» рабочим поршнем 23, который шатуном 24 соединен с валом двигателя 2 и группу расширительных цилиндров 20 с установленным внутри каждого из них в полости «В» вытеснительным поршнем 25. Каждый расширительный цилиндр 20 оборудован снаружи кожухом 26, образующим полость «Г» для охлаждения расширительного цилиндра 20. Вытеснительный поршень 25 соединен шатуном 27 с валом двигателя 8. Трубопровод 21 соединяет полости «Б» и «В» для перетекания рабочего тела из рабочего цилиндра 19 в расширительный цилиндр 20. К полости «Г» подсоединены выходы воздухоподводящих патрубков 28, а выхлопные трубопроводы 29 соединяют полость «Г» с внутренней полостью «Д» реактивного сопла 15 (фиг. 1). Входы воздухозаборных патрубков 28 через охлаждающий теплообменник 29 соединены с полостью за компрессором высокого давления 8. Перед двигателем Стирлинга 18 по потоку установлен нагревающий теплообменник 30, который трубопроводами рециркуляции теплоносителя 31 и 32, в одном из которых установлен насос теплоносителя 33 соединен с ядерным реактором 34. Во втором контуре 5 за охлаждающим теплообменником 29 установлен нагревающий теплообменник 35, соединенный трубопроводами рециркуляции 36 и 37, в одном из которых установлен насос теплоносителя 38 с ядерным реактором 34.

Рис.2
Авиационный двигатель оборудован системой управления 39 и датчиками частоты вращения внутреннего и внешнего валов, соответственно 40 и 41. С блоком управления 39 электрическими связями 42 соединены датчики частоты вращения 40 и 41 и привод 16.
При работе при помощи стартера (на фиг. 1 …3 не показан) запускается ГТД 1, при этом включается привод насоса 16, топливный насос 15 подает топливо по топливному трубопроводу 17 в камеру сгорания 9.
Топливо воспламеняется при помощи электрозапальника (на фиг. 1…3 не показа-но). Выхлопные газы, проходят через турбину 10. Рабочее колесо турбины 12, с внешним валом 3 газотурбинного двигателя 1 раскручиваются, т. е ГТД 1 запускается.
Двигатель Стирлинга запускается значительно позже из-за его инерционности. Шатуны 24 и 27 и поршни 23 и 25 двигателя Стирлинга 18 приводятся в действие при помощи внутреннего вала 2 газотурбинного двигателя 1 от компрессора первого каскада 4, который раскручивается в режиме авторотации воздухом, проходящим через него. Механизм преобразования вращательного движения в возвратно-поступательное (этот механизм на фиг. 1..3 детально не показан, но он может быть выполнен в виде коленчатого вала с шатунами) преобразует вращательное движение внутреннего вала 2 в возвратно-поступательное движение поршней 23 и 26 двигателя Стирлинга 18.. Выхлопные газы нагревают через оребрение 22 рабочее тело внутри рабочих цилиндров 19. Для работы двигателя Стирлинга достаточно иметь разницу температур на двух группах цилиндров 19 и 20. Первоначально двигатель Стирлинга 18 работает принудительно и не выдает мощность, а наоборот ее потребляет. Примерно через 5…10 мин. по мере прогрева рабочего тела внутри рабочих цилиндров 19 двигателя Стирлинга 18 он выходит на расчетный режим работы. Медленный выход двигателя Стирлинга18 на расчетный режим работы является одним из его недостатков, но высокий КПД, надежность и хорошие экологические свойства в сочетании с ГТД, имеющим хорошие характеристики запуска делает предложенный двигатель чрезвычайно интересным по всем показателям одновременно, т. к. позволит частично утилизировать тепло в реактивном сопле и применить вместо 4-х …5 ступеней турбины только одну ступень.
Особенностями предложенного авиационного двигателя являются:
— возможность форсирования тяги за счет подвода тепла от ядерного реактора к нагревающему теплообменнику 35,
— наличие его системы регулирования при помощи регулятора расхода. Проектирование такой системы вызвало затруднения, т. к. отсутствует система подачи топлива в двигатель Стирлинга, а регулирование расхода продуктов сгорания перед рабочими цилиндрами 19 затруднительно и приводит к ухудшению экомичности двигателя в целом из-за загромождения его газового тракта. Регулирование режима работы двигателя Стир-линга необходимо для того, чтобы обеспечить его работу вместе с первым каскадом ком-прессора в режиме оптимальных КПД (на расчетном режиме). Это необходимо потому, что в отличие от стационарных газотурбинных установок авиационные двигатели эксплуатируются в широком диапазоне температур окружающего воздуха (от +40 до -76 0С.) и при давлении от 1 кгс/см2 практически до вакуума на высоте полета от 10000 м до 25000м.
Утилизация тепла при помощи теплообменников (регенерация), используемая традиционно не эффективна, например, из-за больших габаритов теплообменников, их большого веса, загромождения газового тракта и необходимости дальнейшего преобразования тепловой энергии подогретого воздуха или пара в механическую энергию, например, при помощи паровой турбины.
В результате использования утилизации тепла выхлопных газов в двигателе Стирлинга КПД авиационного двигателя возрастает примерно на 10…17 %.
Применение изобретения позволило:
1. Создать значительную тягу на форсажном режиме.
2. Значительно повысить КПД авиационного двигателя за счет использования для получения энергии на валу нагрузки кроме ГТД двигателя Стирлинга, который утилизирует тепло, раньше сбрасываемое в реактивное сопло и в атмосферу или срабатываемое на нескольких ступенях турбины. Соответственно снизить удельный расход топлива: расход в единицу времени на 1 т тяги двигателя.
3. Согласовать работу ГТД и Двигателя Стирлинга, имеющих разную инерционность, за счет применения двухкаскадного двухвального ГТД.
4. Обеспечить регулирование режима работы двигателя Стирлинга.
5. Облегчить запуск комбинированного авиационного двигателя, за счет применения двухвальной схемы и запуска только второго каскада.
6. Уменьшить количество ступеней турбины, за счет того, что их функцию берет на себя в основном двигатель Стирлинга.
7. Снизить эмиссию токсичных веществ в атмосферу, за счет того, что двигатель Стирлинга имеет значительно лучшие экологические показатели по сравнению с другими типами двигателей.
8. Снизить стоимость авиационного двигателя, за счет уменьшения количества дорогостоящих ступеней турбины, лопатки и диски которых выполняются из жаропрочных сплавов и упрощения схемы охлаждения турбины.
9. Уменьшить вес авиационного двигателя, что особенно важно в авиации.
10. Повысить надежность авиационного двигателя за счет отказа от нескольких ступеней турбины, рабочие лопатки которых являются самыми нагруженными деталями двигателя, ограничивающими его ресурс и в первую очередь влияющие на надежность двигателя, самолета и безопасность авиаперевозок.

Автор статьи: Патентный поверенный РФ Болотин Николай Борисович

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.