Комбинированный двигатель

миниатюра 8

Изобретение относится к авиадвигателестроению.
Предложенное техническое решение (рис. 1) содержит газотурбинный двигатель ГТД 1, который выполнен двухвальным и содержит внутренний вал 2 и внешний вал 3, компрессор 4, состоящий, в свою очередь из первого и второго каскадов компрессора, со-ответственно 5 и 6, далее расположены основная камера сгорания 7 с форсунками 8, турбина 9, содержащую в свою очередь сопловой аппарат 10 и рабочее колесо 11. Валы 2 и 3 установлены на опорах 12. Газотурбинный двигатель 1 содержит основную систему топливоподачи с основным топливным баком 13, основным топливным трубопроводом 14, основным топливным насосом 15 и приводом основного топливного насоса 16, и далее форсунки 8 основной камеры сгорания 7. Основная система топливоподачи работает на авиационном керосине.

рис.1
Концентрично основной камере сгорания 7 на большем диаметре размещена дополнительная камера сгорания 17 с форсунками 18. Дополнительная камера сгорания 17 имеет дополнительную топливную систему, работающую на другом более дешевом низкосортном топливе. Эта система содержит дополнительный топливный бак 19, дополни-тельный топливный трубопровод 20, дополнительный топливный насос 21 с дополнительным приводом 22. Дополнительный топливный трубопровод 20 соединен с форсунками 18 дополнительной камеры сгорания 17. Дополнительная камера сгорания 17 необходима для обеспечения работы двигателя Стирлинга 24, который скомпонован с ГТД 1. К дополни-тельной камере сгорания 17 также подведен трубопровод отбора воздуха 23, другой конец которого соединен с компрессором 4. Другой конец трубопровода отбора воздуха 23 под-соединен к компрессору 4, за одной из его промежуточных ступеней, предпочтительно после первого каскада компрессора 5. Это необходимо потому, что для работы двигателя Стирлинга нет необходимости в высоком давлении в дополнительной камере сгорания 17, т. к. КПД цикла двигателя Стирлинга не зависит от этого давления.
Отличительной особенностью комбинированного авиационного двигателя является наличие двигателя Стирлинга 24 (двигатель внешнего сгорания), установленного за турбиной 9, т. е. за ее рабочим колесом 10.
Двигатель Стирлинга 24 состоит из двух частей: группы рабочих цилиндров 25 и группы расширительных цилиндров 26, которые соединены трубопроводами 27. Группу расширительных цилиндров 26 предпочтительно установить вне газового тракта ГТД. К группе расширительных цилиндров 26 подсоединен канал «Е», выполненный между валами 2 и 3. Другой конец этого канала «Е», предназначенного для подачи охлаждающего воздуха соединен с полостью «Ж» за одной из промежуточных ступеней компрессора 24, предпочтительно за первым каскадом компрессора 5, чтобы обеспечить подачу относительно холодного воздуха для охлаждения расширительных цилиндров 26 и одновременно обеспечить разгрузку осевых сил, действующих на внутренний вал 2. в сторону входа в двигатель. Далее по потоку установлен смеситель 28.
После смесителя 28 установлено реактивное сопло 29, содержащее соответственно внешнюю стенку 30 и обтекатель конической формы 31, который установлен внутри внешней стенки. Реактивное сопло 29 закреплено на ребрах 32, а дополнительная камера сгорания 17 – на ребрах 33.
На рис. 2 и 3 приведена схема одного из вариантов исполнения двигателя Стирлинга 24, который содержит группу рабочих цилиндров 25 и группу расширительных цилиндров 26. Рабочие цилиндры 25 установлены за смесителем 28 и омываются одновременно продуктами сгорания из основной камеры сгорания 7 и из дополнительной камеры сгорания 17.

Рис.2

Рабочие цилиндры 25 имеют оребрение 34, внутри каждого из них в полости «Б» установлен рабочий поршень 35, который шатуном 36 соединен с внутренним валом двигателя 2. Внутри расширительных цилиндров 26 установлены в полости «В» вытесни-тельные поршни 37. Каждый расширительный цилиндр 26 оборудован снаружи кожухом 38, образующим полость «Г» для охлаждения расширительного цилиндра 26. Вытеснительный поршень 37 соединен шатуном 39 с внутренним валом двигателя 2. Трубопровод 27 соединяет полости «Б» и «В» для перетекания рабочего тела из рабочего цилиндра 25 в расширительный цилиндр 26. К полости «Г» подсоединен трубопровод подачи охлаждающего воздуха 28, а выхлопные трубопроводы 40 соединяют полость «Г» с внутренней полостью «Д» реактивного сопла 29 (фиг. 1).
При работе при помощи стартера (на рис. 1 и 2 не показан) запускается ГТД 1, при этом включается основной привод насоса 16, основной топливный насос 15 подает основное топливо по основному топливному трубопроводу 14 в форсунки 8 основной камеры сгорания 7.
Топливо воспламеняется при помощи электрозапальника (на рис. 1…3 не показа-но). Выхлопные газы, проходят через турбину 9. Рабочее колесо турбины 11, с внешним валом 3 газотурбинного двигателя 1 раскручиваются, т. е ГТД 1 запускается.
Двигатель Стирлинга 24 запускается значительно позже из-за его инерционности. При этом включается дополнительный привод насоса 22, дополнительный топливный насос 21 подает дополнительное топливо по дополнительному топливному трубопроводу 20 в форсунки 18 дополнительной камеры сгорания 7.
Шатуны 36 и 39 и поршни 35 и 37 двигателя Стирлинга приводятся в действие при помощи внутреннего вала 2 газотурбинного двигателя 1 от компрессора первого каскада 4, который раскручивается в режиме авторотации воздухом, проходящим через него. Механизм преобразования вращательного движения в возвратно-поступательное (этот механизм на рис. 1..3 детально не показан, но он может быть выполнен в виде коленчатого вала с шатунами) преобразует вращательное движение внутреннего вала 2 в возвратно-поступательное движение поршней 35 и 37 двигателя Стирлинга 24.. Выхлопные газы из дополнительной камеры сгорания нагревают через оребрение 34 рабочее тело внутри рабочих цилиндров 25. Для работы двигателя Стирлинга достаточно иметь разницу температур на двух группах цилиндров 25 и 26. Первоначально двигатель Стирлинга 24 работает принудительно и не выдает мощность, а наоборот ее потребляет. Примерно через 5…10 мин. по мере прогрева рабочего тела внутри рабочих цилиндров 25 двигателя Стирлинга он выходит на расчетный режим работы. Медленный выход двигателя Стир-линга на расчетный режим работы является одним из его недостатков, но высокий КПД, надежность и хорошие экологические свойства в сочетании с ГТД, имеющим хорошие характеристики запуска делает предложенный двигатель чрезвычайно интересным по всем показателям одновременно, т. к. позволит частично утилизировать тепло в реактивном сопле и применить вместо 4-х …5 ступеней турбины только одну ступень.
Другим преимуществом предложенного комбинированного авиационного является то, что в качестве дополнительного топлива может использоваться низкосортное дешевое топливо: солярка, мазут, природный газ и т. д., при этом экологические свойства двигателя не только не ухудшатся, а значительно улучшатся. Это объясняется тем, что основная камера сгорания имеет полноту сгорания топлива не более 0,98, из-за ее ограниченных габаритов (объема). Дополнительная камера сгорания 17 вынесена на значительно больший диаметр и не имеет существенного ограничения по длине, поэтому ее объем превышает в 4…5 раз объем основной камеры сгорания 7, поэтому полнота сгорания даже для низкосортного топлива достигает 0,995 и выше.
Кроме того, КПД двигателя Стирлинга выше, чем КПД всех известных современных двигателей, следовательно КПД предложенного комбинированного авиационного двигателя будет выше.
Надежность двигателя, имеющего две независимые топливные и силовые системы возрастет в два раза.
Утилизация тепла при помощи теплообменников (регенерация), используемая традиционно не эффективна, например, из-за больших габаритов теплообменников, их большого веса, загромождения газового тракта и необходимости дальнейшего преобразования тепловой энергии подогретого воздуха или пара в механическую энергию, например, при помощи паровой турбины.
В результате использования утилизации тепла выхлопных газов в двигателе Стир-линга КПД авиационного двигателя возрастает примерно на 10…17 %.
Применение изобретения позволило:
1. Значительно повысить КПД авиационного двигателя за счет использования для получения энергии на валу нагрузки кроме ГТД двигателя Стирлинга, который утилизирует тепло, раньше сбрасываемое в реактивное сопло и в атмосферу или срабатываемое на нескольких ступенях турбины. Соответственно снизить удельный расход топлива: расход в единицу времени на 1 т тяги двигателя.
2. Использовать дешевое низкосортное топливо в авиации.
3. Повысить надежность двигателя
— за счет того, что при отказе ГТД 1 или двигателя Стирлинга 24 возможно продолжение полета и посадка самолета, оборудованного подобными двигателями
— при отказе дополнительной топливной системы двигатель Стирлинга будет продолжать работу за счет тепловой энергии, создаваемой основной камерой сгорания, т. к. его рабочие цилиндры установлены за смесителем, т. е. одновременно используют энергии, вырабатываемую основной и дополнительной камер сгорания,
— за счет отказа от нескольких ступеней турбины, обычно используемых на мощных современных авиационных ГТД, рабочие лопатки которых являются самыми сложными, дорогостоящими и нагруженными деталями двигателя, ограничивающими его ресурс и в первую очередь влияющие на надежность двигателя, самолета и безопасность авиаперевозок,
— за счет подвода охлаждающего воздуха к расширительным цилиндрам между валами, что позволило дополнительно охладить валы и опоры двигателя.
4. Согласовать работу ГТД и двигателя Стирлинга, имеющих разную инерционность, за счет применения двухкаскадного двухвального ГТД.
5. Облегчить запуск комбинированного авиационного двигателя, за счет применения двухвальной схемы и запуска только второго каскада.
6. Уменьшить количество ступеней турбины, за счет того, что их функцию берет на себя в основном двигатель Стирлинга.
7. Снизить эмиссию токсичных веществ в атмосферу, за счет того, что двигатель Стирлинга имеет значительно лучшие экологические показатели по сравнению с другими типами двигателей.
8. Снизить стоимость авиационного двигателя, за счет уменьшения количества дорогостоящих ступеней турбины, лопатки и диски которых выполняются из жаропрочных сплавов и упрощения схемы охлаждения турбины.
9. Уменьшить вес авиационного двигателя, что особенно важно в авиации.
10. Уменьшить стоимость перевозки пассажиров и грузов и снизить эксплуатационные затраты примерно в два раза.

Автор статьи: Патентный поверенный РФ Болотин Николай Борисович

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.

look at this: site