Мобильный боевой лазер

миниатюра 6

Изобретение относится к области вооружения, а именно к средствам и способам длительного ведения оборонительных действий от атаки авиационных средств противника с применением  одного или нескольких управляемых лучей лазера с ядерной накачкой большой мощности. Газодинамический лазер Г. Л. [ 1 — 4 ] — газовый лазер ,в котором инверсия населенностей создаётся в системе колебательных уровней энергии молекул газа путём адиабатического охлаждения нагретых газовых масс.

Г. л. состоит из нагревателя, сверхзвукового сопла (или набора сопел, образующих т. н. сопловую решётку), оптического резонатора и диффузора. В нагревателе происходит тепловое возбуждение специально подобранной смеси газов (в результате сгорания топлива или подогрева с помощью электрических разрядов и ударных волн). При течении газа в сверхзвуковом сопле смесь быстро охлаждается. Необходимая для возбуждения генерации инверсия населенностей энергетических уровней рабочего компонента смеси достигается, если: 1) скорость опустошения (релаксации) нижнего уровня лазерного перехода в процессе расширения выше скорости релаксации верх. уровня; 2) время опустошения верх. уровня больше характерного т. н. газодинамического времени (времени движения газа до резонатора). Если для определения пары энергетических уровней эти условия выполнены, то из-за сильной зависимости времён релаксации от температуры и плотности газа, начиная с некоторого момента от начала расширения, быстрое падение населённости верх. уровня сменяется медленным, тогда как населённость нижнего продолжает уменьшаться с заметной скоростью. Часть избыточной энергии верхнего уровня может быть трансформирована в резонаторе в энергию лазерного луча. Диффузор служит для торможения потока и повышения давления газа, который выбрасывается в атмосферу.
Активная среда. Указанным требованиям наиболее полно отвечают колебательным состояния молекул, обладающие большими временами жизни (по сравнению с электронными и вращательными уровнями). Процессы колебательной релаксации позволяют осуществить: полную инверсию колебательных уровней и т. н. частичную колебательно-вращательную инверсию. В соответствии с этим «рабочими» частицами Г. л. служат как многоатомные, так и двухатомные гетероядерные молекулы, имеющие, в отличие от гомоядерных молекул, разрешённые колебательно-вращательные переходы.
Первым и наиб. распространённым является Г. л. на полной колебательной инверсии между уровнями 0001 и 1000 (или 0200) молекулы CO2. Соответствующие длины волн генерации =10,4-9,4 мкм (рис. 2). Уровень 0001 соответствует асимметричным колебаниям молекулы CO2, уровни 1000 и 0200 — колебаниям деформационного и симметрического типов. Однако в чистом CO2 необходимое соотношение времён релаксации этих уровней не выполнено. Это соотношение сдвигается в нужную сторону при добавлении определенного кол-ва молекул H2, H2O, атомов Не и др. Их столкновения с молекулами CO2 опустошают нижние лазерные уровни (1000 и 0200) значительно быстрее, чем уровень 000I. Увеличение запаса колебательной энергии в охлаждённом газе достигается также введением в газовую смесь в форкамере донорного газа, молекулы которого релаксируют медленно и способны быстро передавать запасённую в них энергию на уровни, соответствующие асимметричным колебаниям молекулы CO2. Роль донорного газа обычно выполняют возбуждённые молекулы N2, колебательные уровни которых близки к уровням молекулы CO2.
Г. л. на продуктах сгорания является простейшим Г. л., имеющим практическое значение. В форкамере сжигается углеродсодержащее топливо в воздухе, горячие продукты сгорания пропускаются через сопловой аппарат и резонатор . В зависимости от используемого топлива и условий его сжигания давление р0, температуpa T0 и хим. состав продуктов в форкамере меняются в широких пределах (р0=5-100 атм, T0= 1500-3000 К). Таким способом, как правило, не удаётся получить высокой эффективности. Г.л. на продуктах сгорания имеет низкий кпд ( 1%). Это обусловлено тем, что только 7-10% от энергии сгорания идёт на возбуждение колебательных уровней молекулы CO2. Кроме того, из-за релаксации потерь энергии в потоке, невысокого отношения энергии кванта лазерного излучения к энергии кванта, необходимого для возбуждения асимметричного колебания молекулы CO2 (квантового кпд), и относительно небольшой эффективности резонатора не весь энергозапас может быть трансформирован в лазерное излучение. Реально в Г. л. на продуктах сгорания энергия, излучаемая на единицу массы сжигаемой смеси (уд. энергия излучения) 20 кДж/кг, а показатель усиления 0,5-1,0 M-1.

Другие типы Г. л. Один из путей повышения эффективности Г. л. состоит в снижении релаксации потерь запасённой колебательной энергии. Из-за сравнительно высоких скоростей релаксации колебательных уровней молекулы CO2 практически вся теряемая средой энергия преобразуется в теплоту, причём это происходит в околокритической части сопла, где высоки температуpa и плотность газа. Отсутствие CO2 в этой части потока снижает до минимума потери энергии. Поэтому необходимое кол-во CO2 вводят в поток возбуждённого донорного газа в сверхзвуковую или околозвуковую часть сопла. При этом температура вводимого CO2 может быть низкой ( 200- 300 К). В таком варианте Г. л. (Г. л. «с подмешиванием») появляется дополнит. возможность повышения полного числа колебательно возбуждённых молекул за счёт нагревания донорного газа до более высоких температур Т0=4000-5000 К. Уд. энергия излучения достигает 50-100 кДж/кг, показатель усиления 3-5 м-1, полный кпд ~2-3%.
Эффективность Г. л. повышается и в том случае, когда хотя бы часть запасённой энергии удаётся преобразовать в лазерное излучение с большим квантовым кпд. В случае CO2 эта возможность связана с т. н. каскадной генерацией одновременно на двух переходах 0001-1000(0200) и 1000(0200)-0l10. Последняя имеет квантовый кпд 71,6%. Условия для возникновения двухчастотной генерации более жёсткие, чем в одночастотном режиме. Они легче достигаются в Г. л. «с подмешиванием». По мере вывода каскадного излучения из резонатора внутренней энергия системы падает и условие двухчастотной генерации перестаёт выполняться. Оставшаяся в среде колебательная энергия (верх. переход) трансформируется в лазерное излучение следующим, расположенным ниже по потоку резонатором, настроенным на переходы 0001-1000(0200).
Г. л. на CO2 работают также на др. колебательных переходах, напр. на переходах 0310-1000, 0310-0220 и 0200-0l10 ( =18,4, 16,7 и 16,2 мкм). В этом случае необходимы замораживание как можно большей энергии в системе уровней деформации и симметричных колебаний молекулы и охлаждение газа до температур 70- 100 К. Наилучшие результаты получены для смесей CO2 с Ar и Ne и сопловых аппаратов с большими степенями расширения. В качестве рабочего компонента в Г. л. используются и др. трёхатомные молекулы (N2O, COS, CS2).
Действие др. типа Г. л. основано на инверсии в системе колебательно-вращательных уровней в двухатомных гетероядерных молекулах (СО, HCl и др.). Инверсия возникает между вращательным подуровнями различных возбуждённых колебательных уровней. Если это возбуждение мало, то вращательные подуровни, между которыми имеется инверсия, соответствуют очень большим значениям вращат. квантового числа, а потому имеют малую населённость. Это, в свою очередь, определяет малый показатель усиления, недостаточный для возбуждения генерации. Генерация возбуждается, если т. н. колебательная температуpa Ткол (эфф. температуpa, с которой заселены колебательные уровни) и температура газа T находятся в соотношении Наиб. высокое значение расширяющегося газа может быть сохранено в системе слабо релаксирующих уровней, напр. в системе уровней молекулы СО ( = 5 мкм). Необходимое охлаждение газа достигается в сопловых аппаратах с высокой степенью расширения.
За последние несколько лет большую популярность в мире завоевали системы глобального позиционирования (определения точного местоположения) GPS. Это, действительно, очень перспективный рынок. Объем мирового рынка услуг глобального позиционирования в 2003 г.составил $500 млн, а по прогнозу Ovum, в 2005 г. его объем составит $9.75 млрд (при 376 млн абонентов). Некоторым основам функционирования систем глобального позиционирования и их применению в мире и посвящена данная статья. Первые системы глобального позиционирования GPS (Global Positioning System) разрабатывались исключительно для военных целей. Глобальная навигационная система GPS предназначена для передачи навигационных сигналов, которые могут одновременно приниматься во всех регионах мира. Инициатором создания GPS-системы стало Министерство Обороны США. Ее разработка началась в 1973 г., когда Министерство Обороны США перестала устраивать радионавигационная система, состоящая из наземных навигационных систем Loran-C и Omega, и спутниковой системы Transit. Проект создания спутниковой сети для определения координат в режиме реального времени в любой точке земного шара был назван NAVSTAR GPS (NAVigation Satellite Timing And Ranging Global Positioning System — навигационная система определения времени и дальности). Используемая сейчас аббревиатура GPS появилась позднее, когда система стала использоваться не только для военных, но и для мирных целей. Первая штатная орбитальная группировка системы разворачивалась с июня 1989 г. по март 1994 г. На орбиту были выведены 24 навигационных спутника Block II. Окончательно GPS-система была введена в эксплуатацию в 1995 г. В настоящее время она эксплуатируется и обслуживается Министерством Обороны США. В состав GPS-системы входят 3 основных сегмента: космический, наземный и пользовательский. Космический сегмент состоит из 28 автономных спутников, равномерно распределенных по орбитам с высотой 20350 км (для полнофункциональной работы системы достаточно 24 спутников). Каждый спутник излучает на 2 частотах специальный навигационный сигнал, в котором зашифровано 2 вида кода. Один из них доступен лишь немногим пользователям, среди которых, конечно же, военные и федеральные службы США. Кроме этих 2 сигналов, спутник излучает и третий, информирующий пользователя о дополнительных параметрах (состоянии спутника, его работоспособности и др.). Параметры орбит спутников периодически контролируются сетью наземных станций слежения (всего 5 станций, находящихся в тропических широтах), с помощью которых (не реже 1-2 раз в сутки): вычисляются баллистические характеристики, регистрируются отклонения спутников от расчетных траекторий движения, определяется собственное время бортовых часов спутников, осуществляется мониторинг исправности навигационной аппаратуры и др. При этом для обнаружения отказов оборудования спутников с помощью наземных станций обычно требуется несколько часов. Третий сегмент GPS-системы — это GPS-приемники, выпускаемые и как самостоятельные приборы (носимые или стационарные), и как платы для подключения к ПК, бортовым компьютерам и другим аппаратам. Основные возможности GPS-системы (при наличии приемника GPS-сигнала):
— определение местонахождения мобильного абонента;
— определение наиболее короткого и удобного пути до пункта назначения;
— определение обратного маршрута;
— определение скорости движения (максимальной, минимальной, средней);
— определение времени в пути (прошедшего и сколько потребуется еще) и др.
Основные характеристики GPS-системы приведены в таблице 1.
Количество спутников в орбитальной группировке 28
Число орбитальных плоскостей 63
Число спутников в каждой плоскости 48
Высота орбиты (км) 20350
Наклонение орбиты (градус) 55
Период обращения спутников (ч) 12
Масса спутника (кг) 1055
Мощность солнечных батарей спутника (Вт) 450
Срок эксплуатации (лет) 7,5
Поляризация правосторонняя
Погрешность определения 100 (С/А-код); 16 (Р-код)
Погрешность определения 10 (С/А-код); 0,1 (Р-код)
Погрешность определения времени (нc) 340 (С/А-код); 90 (Р-код)
Надежность навигационных определений (%) 95
Основы функционирования GPS-системы
Теория дальнометрии основана на вычислении расстояния распространения радиосигнала от спутника к приемнику по временной задержке. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить, просто умножив время распространения радиосигнала на скорость света.
Каждый спутник GPS-системы непрерывно генерирует радиоволны 2 частот — (L1=1575.42 МГц и L2=1227.60 МГц). Навигационный сигнал представляет собой фазоманипулированный псевдослучайный PRN-код (Pseudo Random Number code). PRN-код бывает 2 типов. Первый — C/A-код (Coarse Acquisition code — грубый код) используется в гражданских приемниках. Он позволяет получать лишь приблизительную оценку местоположения, поэтому и называется «грубым» кодом. C/A-код передается на частоте L1 с использованием фазовой манипуляции псевдослучайной последовательности длиной 1023 символа. Защита от ошибок обеспечивается посредством кода Гоулда. Период повторения С/А-кода — 1 мс. Другой код — P (precision code — точный код) — обеспечивает более точное вычисление координат, но доступ к нему ограничен. В основном, P-код предоставляется военным и (иногда) федеральным службам США (например, для решения задач геодезии и картографии). Этот код передается на частоте L2 с применением сверхдлинной псевдослучайной последовательности с периодом повторения 267 дней. Этот код доступен в принципе и гражданским лицам. Но алгоритм его обработки гораздо более сложен, поэтому и аппаратура стоит дороже. В свою очередь, частота L1 модулируется как С/А, так и Р-кодом. В сигнале GPS может присутствовать и так называемый Y-код, являющийся зашифрованной версией P-кода (в военное время система шифровки может меняться).
Кроме навигационных сигналов, спутник непрерывно передает различного рода служебную информацию. Пользователь GPS-приемника информируется о состоянии спутника и его параметрах: системном времени; эфемеридах (точных данных об орбите спутника); прогнозируемом времени задержки распространения радиосигнала в ионосфере (т. к. скорость света меняется при прохождении разных слоев атмосферы), работоспособности спутника (в так называемом «альманахе» содержатся обновляемые каждые 1…5 мин сведения о состоянии и орбитах всех спутников). Эти данные (длиной
В основе определения координат GPS-приемника лежит вычисление расстояния от него до нескольких спутников, расположение которых считается известным (эти данные находятся в принятом с GPS-спутника «альманахе»). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами называется «трилатерацией».
Если известно расстояние до одного спутника, то координаты приемника определить нельзя (он может находиться в любой точке сферы радиусом, описанной вокруг спутника). Пусть известна удаленность приемника от второго спутника. В этом случае определение координат также не представляется возможным — объект находится на окружности, которая является пересечением двух сфер. Расстояние до третьего спутника сокращает неопределенность в координатах до двух точек. Этого уже достаточно для однозначного определения координат — дело в том, что из двух возможных точек расположения приемника лишь одна находится на поверхности Земли (или в непосредственной близости от нее), а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, для трехмерной навигации теоретически достаточно знать расстояния от приемника до 3 спутников.
Глобальная Навигацио́нная Спу́тниковая Систе́ма (ГЛОНА́СС) — советская и российская спутниковая система навигации, разработана по заказу Министерства обороны СССР. Одна из двух функционирующих на сегодня систем глобальной спутниковой навигации[1]. Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях с наклоном орбитальных плоскостей 64,8° и высотой 19 100 км. Принцип измерения аналогичен американской системе навигации NAVSTAR GPS. В настоящее время развитием проекта ГЛОНАСС занимается Федеральное космическое агентство (Роскосмос) и ОАО «Российские космические системы»[2].
Российская глобальная навигационная спутниковая система (ГЛОНАСС) предназначена для оперативного навигационно-временного обеспечения неограниченного числа пользователей наземного, морского, воздушного и космического базирования. Доступ к гражданским сигналам ГЛОНАСС в любой точке земного шара на основании указа Президента РФ предоставляется российским и иностранным потребителям на безвозмездной основе и без ограничений.
Для обеспечения коммерциализации и массового внедрения технологий ГЛОНАСС в России и за рубежом Постановлением Правительства РФ в июле 2009 г. был создан «Федеральный сетевой оператор в сфере навигационной деятельности», функции которого были возложены на ОАО «Навигационно-информационные системы».
Основное отличие от системы GPS в том, что спутники ГЛОНАСС в своем орбитальном движении не имеют резонанса (синхронности) с вращением Земли, что обеспечивает им большую стабильность. Таким образом, группировка КА ГЛОНАСС не требует дополнительных корректировок в течение всего срока активного существования. Тем не менее срок службы спутников ГЛОНАСС заметно короче.
Мобильный боевой комплекс (рис. 1…13) содержит боевую машину 1 и, по меньшей мере, один заправщик горючего 2.
При этом боевая машина 1 (рис. 1…6) содержит гусеничную ходовую часть 3, двигательный отсек 4 с установленным на нем бронеотсеком 5, в свою очередь имеющим боковую броню 6 и верхний бронелист 7. В бронеотсеке 5 установлена по меньшей мере одна емкость горючего 8 с заправочной горловиной 9, краном 10 и расходомером 11.. Над верхним бронелистом 7 установлена поворотная платформа 12, которая связана с приводом 13. С приводом 13 соединен датчик угла поворота 14. На поворотной платформе 12 установлен бронецилиндр 15, имеющим верхний бронированный торец 16.

Рис.1Рис.2
Внутри бронецилиндра 15 установлен боевой лазер 17, Боевой лазер 17 содержит как источник энергии газотурбинный двигатель ГТД 18, установленный на центральном шарнире 19 и, по меньшей мере один резонатор 20, установленный на ГТД 18 под острым углом α к продольной оси его реактивного сопла (по направлению выхлопной струи продуктов сгорания), т.е. с наклоном вверх.

Рис.3
Резонаторы 20 содержат каждый корпус 21, цилиндрической формы, выполненный из двух соосно установленных частей первой 22 и второй 23 . В первой части 22 корпуса 21 установлено зеркало 24, во второй части 23 корпуса 21 установлены диафрагма 25 и объектив 26. ГТД 18 содержит турбокомпресор 27 и реактивное сопло 28.

Рис.4
Турбокомпрессор 27 содержит воздухозаборник 29, компрессор 30, камеру сгорания 31, турбину 32. Топливная система содержит топливопровод 33, насос 34 и форсунки 35. Реактивное сопло 28 может быть дозвуковым или сверхзвуковым. В дальнейшем описан пример сверхзвукового реактивного сопла 28, которое содержит дозвуковую часть 36 и сверхзвуковую часть 37 установленную в отверстии 38, которое выполнено в верхнем бронированном торце 16. Такая конструкция описанного выше соединения сделана для предотвращения огромных температурных напряжений в деталях ГТД 18 и для исключения попадания на узлы ГТД атмосферных осадков.
На боковой поверхности бронецилиндра 15 выполнены в верхней части отверстия 39, в которых установлены вторые части 23 корпусов 21 резонаторов 20 (фиг. 5). Части 23 могут быть уплотнены для исключения попадания атмосферных осадков внутрь бронецилиндра 15 при помощи уплотнений 40.

Рис.5
Внутри бронецилиндра выполнена радиальная перегородка 41, которая разделяет его полость на нижнюю 42 и верхнюю 43. В стенке бронецилиндра 15 в его нижней части выполнены отверстия 44, сообщающие нижнюю полость 42 с атмосферой для забора атмосферного воздуха перед поступлением в воздухозаборник 29, а в верхней части отверстия 45 для сброса охлаждающего воздуха. Охлаждающий воздух в верхнюю полость 43 в количестве от 1% до 3 % от суммарного расхода через ГТД 18 отбирается из-за промежуточной ступени компрессора 30 при помощи трубопровода 46 с клапаном 47. Клапан 47 позволяет отключать охлаждение в зимнее время при очень низких температурах окружающей среды. На валу 48 ГТД 18 установлен датчик частоты вращения 49. ГТД 18 содержит стартер 50 соединенный при помощи кинематического механизма 51 с валом 48.
Возможен вариант исполнения боевой машины с ядерным реактором 52, и установленным внутри камеры сгорания 31 теплообменника 53 (рис. 6), который трубопроводами рециркуляции 54 и 55, в одном из которых установлен насос 56 соединены между собой.

Рис.6

Это не только увеличит энергию лазерных лучей за счет использования тепловой энергии ядерного реактора 52, но и повысит его КПД за счет радиоактивной накачки продуктов сгорания и, самое главное, во много раз увеличит время непрерывной работы боевого лазера 17 за свет снижения расхода горючего (примерно в 10…20 раз) и сжигания горючего при низкой (минимально- возможной ) температуре. Особенностью ядерного реактора 52 является то, что он выполнен по упрощенной схеме, имеет минимальные габариты и вес и облегченную антирадиационную защиту для повышения КПД боевого лазера 17.
Над боевым лазером 17 может быть на опоре 57, установленной на гусеничном шасси 3 (рис. 4) установлен зенитный пулемет 58 с системой дистанционного управления 59 и крупнокалиберные авиационные пулеметы 60 с системой дистанционного управления 61. Оружие предназначено для обороны комплекса на марше и при израсходовании компонентов ракетного топлива: окислителя и горючего.
Как сужающаяся 32, так и расширяющаяся часть 33 реактивного сопла 28 выполнены с возможностью регенеративного охлаждения (фиг. 7 и 9) и содержат две стенки; внутреннюю стенку 62 и наружную стенку 63 с зазором между ними 64.

Рис.7

На внутренней поверхности внутренней стенки 62 нанесен слой урана 235 – 65, а в саму внутреннюю стенку 62 внедрены частицы урана 238 –66. (фиг. 9).

Рис.8
Боевая машина 1 (фиг. 1 и 4) содержит источник электроэнергии 67, силовой кабель 68 соединяющий источник электроэнергии 67 с коммутатором 69, к которому присоединены также силовыми кабелями 68 все потребители электроэнергии, в частности привод 13. На боевой машине 1 установлен бортовой компьютер 70, к которому электрическими связями 71 присоединены приемник системы Глонасс 72 с антенной 73 и приемно-передающее устройство 74 с антенной 75. Связь приемника системы Глонасс 72 со спутниками 76 осуществляется при помощи антенны 73 по радиоканалу 77.
Боевой лазер 17 (рис. 7 и 11) содержит баллон сжатого воздуха 78, с которым соединен трубопровод высокого давления 79, имеющий клапан 80 и редуктор 81.. Другой конец трубопровода высокого давления 79 соединен со стартером 50.

Рис.9Рис.10
Части 22 и 23 резонатора 20 соосно закреплены на реактивном сопле 28. ГТД 18 под острым углом к продольной оси реактивного сопла 28, по отношению к срезу сопла ( в сторону выхлопа) и в местах стыковки с камерой сгорания 31 выполнены эллипсные отверстия, а именно, выходное 82 и входное 83 для прохождения луча лазера. Для улучшения охлаждения резонаторов 20 их корпуса 21 выполнены двойными и содержат наружную стенку 84 и внутреннюю стенку 85 с зазором между ними 86. На частях 22 и 23 выполнены входной и выходной коллекторы 87 и 88. К входному коллектору 87 присоединен трубопровод 89 для подвода охлаждающего воздуха из-за промежуточной ступени компрессора 30, например через клапан 90 (рис. 1).
Заправщик горючего 2 (рис. 10) может содержать многоколесное шасси 91 и по меньшей мере одну емкость горючего 92 и имеют заправочные шланги 93.
На заправщиках горючего 2 на поворотном основании 94 может быть размещен зенитный пулемет 95 с дистанционным управлением 96 и крупнокалиберные авиационные пулеметы 97 с дистанционным управлением 98 (от 2-х до 4-х на одном заправщике горючего 2 (рис. 13).
Заправщики горючего 2 также максимально автоматизированы (рис. 11), на них применены бортовые компьютеры 99, приемник системы Глонасс 100, антенна 101, приемно-передающее устройство 102 с антенной 103. Все электронные компоненты соединены электрическими связями 104. На заправщиках горючего 2 могут быть установлены источники электрической энергии 105, соединенный силовыми кабелями 106 с коммутатором 107. Коммутатор 107 соединен силовыми кабелями 106 с приводом 13, с дистанционным управлением 96 и 98 и другими потребителями энергии.
На фиг. 12 приведена конструкция боевой машины 1 с диффузором 108, закрепленным над верхним бронеторцом 16 соосно с реактивным соплом 28 на кронштейнах 109.

Рис.11
На рис. 13 приведена схема веде6ния боевых действий боевой машины 1 с самолетами противника 110 и показан результат пересечения луча лазера самолета противника 110, в результате которого он разрезан на две части 111 и 112.

Рис.12
БОЕВОЕ ПРИМЕНЕНИЕ: КОМПЛЕКСА
Боевой комплекс спроектирован только для обороны участка неба в радиусе прямой видимости по радиусу и высоте до 30 000 м со стороны боевой машины 1 (рис. 1…13). Вертикальное расположение ГТД 18 выходом из реактивного сопла 28 вверх исключат влияние реактивной тяги ГТД 18 на точность стрельбы. А большое количество резонаторов 20 и быстрое вращение бронецилиндра 15 исключат проникновение на защищаемую территорию самолетов и ракет противника.
При запуске боевого лазера 17 сначала запускают газотурбинный двигатель 18, потом ядерный реактор 52 при его наличии. Для запуска ГТД 18 открывают клапан 80 и сжатый воздух по трубопроводу высокого давления 79 поступает в стартер 50, который раскручивает вал 48, который приводит в действие компрессор 30. Компрессор 30 подает воздух в камеру сгорания 31. Одновременно насос 34 по топливопроводу 33 подает горючее в форсунки 35, где оно воспламеняется при помощи электрозапальника. Электрозапальник на фиг. 1-12 не показан. Продукты сгорания срабатывая на турбине 32 увеличивают скорость вращения вала 48, что позволяет отключить стартер 50.
Горючее в камере сгорания 31 при включенном ядерном реакторе 52 сгорает при относительно низкой температуре до 500 град. С. Дальнейший подогрев продуктов сгорания до 1500 град. С осуществляется ядерным реактором 52 с использованием теплообменника 53 и циркуляции теплоносителя. Кроме значительного нагрева продукты сгорания подвергаются радиоактивному облучению, это способствует повышению мощности боевого лазера 17.
Управление боевой машиной 1 выполняет бортовой компьютер 70 при помощи привода 13, который создает вращательное движение с максимально- возможной скоростью, обеспечивая защиту пространства на расстоянии до 30 км и высоте до 30 км по конусу, вершина которого совпадает с местом расположения боевой машины 1 (фиг. 12). В результате самолеты противника 110 лучами лазера разрезаются на две части 111 и 112 и учитывая большую вероятность разрезания топливного бака или боеприпасов взрываются, что полностью исключат выполнения ими боевой задачи. То же самое касается и ракет. Управление комплексом выполняется, используя данные о собственных координатах, полученные через приемник системы Глонасс 72 или по радиоканалу 77 приемно-передающим устройством с командного пункта. (На рис. 1-12 командный пункт не показан). Возможно ручное управление с пультов, находящихся в боевой машине 1 ( этот вариант на фиг. 1-12 также не показан).
Выключение боевого лазера 17 осуществляется в обратном порядке.
Сопоставительный анализ показывает, что заявляемое изобретение отличается от прототипа тем, что в каждый комплекс боевой транспортной колоны на марше включают как минимум один заправщик горючего на многоколесном шасси для ускорения передвижения и перезарядки и одну боевую машину на гусеничном ходу. Причем заправщик горючего 2 перед маршем заправляют полностью, при этом боевую машину 1 с боевым лазером в колонне располагают впереди по ходу заправщика горючего 2 и сохраняют между ними безопасное расстояние за все время движения этого комплекса по любым дорогам, а при прибытии на боевую позицию боевая машина 1 сразу вступает в бой и лазерными лучами защищает территорию, потом к ее сбоку размещают заправщик горючего 2 своим задним торцом, затем производят зарядку горючим боевой машины 1, а после этого производит повторный запуск боевого лазера 17, а заправщик горючего 2 сразу направляют за горючим для продолжения ведения оборонительного боя..
Поэтому данное техническое решение отвечает критерию «новизна». Для определения соответствия предлагаемого изобретения критерию «изобретательский уровень» проведен анализ признаков выявленных аналогов. Учитывая, что предлагаемое техническое решение обладает новой совокупностью признаков, которые для специалиста явным образом не следуют из существующего уровня техники, оно соответствует критерию «изобретательский уровень». Предлагаемый способ повышения боевой эффективности мобильного лазерного комплекса позволяет обеспечить:
— автономную топопривязку и навигацию, что позволяет вести стрельбу с неподготовленной в топогеодезическом отношении огневой позиции, наведение лучей лазера;
— одновременную стрельбу несколькими лучами мощного лазера,
— заправку горючим ;
— максимальную скорость движения комплекса по дорогам с твердым покрытием порядка 100 км/час;
— проходимость по снегу, болоту и пескам пустыни,
— запас хода по топливу — 2000 км;
— количество лучей лазера – 1…40 шт,
— полное время перезаправки — до 5 мин.
— время непрерывной обороны
без применения ядерного реактора до 2 час,
с применением ядерного реактора до 40 час
По прибытии на боевую позицию боевая машина 1 сразу вступает в бой. заправщик горючего 2 при этом ставят в укрытие. Но при израсходовании боевой машиной 1 всего собственного запаса горючего ее устанавливают на позиции таким образом, что к ее боку можно разместить заправщик горючего 2 своим боком и из него перекачивают горючее одновременно измеряя объем заправки для управления боем. После отхода заправщика горючего 2 на безопасное расстояние боевая машина 1 производит необходимую стрельбу лазером по атакуемой сверху цели, самолетам всех типов, летящих на высоте от 50 м. до 30 000 м. После заправки боевой машины 1 заправщик горючего 2 направляют за очередной порцией горючего и так до окончания боевых действий. Боевые действия боевая машина 1 ведет либо без участия человека в связи с вредным действием звукового потока работающего ГТД 18 и ядерного реактора 52 на экипаж или используя защитные средства.
Применение изобретения позволит:
Повысить дальность стрельбы лучами лазера до 30 км.
Повысить огневую мощь установки в 20…30 раз.
Обеспечить надежную и полную автоматизацию процесса перезаправки боевой машины горючим.
Улучшить неуязвимость боевого комплекса.
Сделать ресурс стрельбы до капитального ремонта безграничным и ресурс ходовой части, равным ресурсу танка или САУ на базе ходовой части которой изготовлена боевая машина.
Предлагаемый способ повышенной боевой эффективности стрельбы боевым комплексом одновременно несколькими лучами лазера (от 1 до 40 лазерных лучей мощностью от 1 Мвт до 10 Мвт каждый) позволяет длительное время держать оборону участка радиусом около 30 000 м и поражать:
— самолеты всех типов: бомбардировщики, истребители, штурмовики, разведчики и транспортные самолеты,
— ракеты противника любого класса в радиусе прямой видимости,
Боевые возможности установки таковы, что она способна за 1 мин разрезать от 100 до 300 атакующих самолетов в радиусе до 30 км .
Основной отличительной способностью предложенного боевого комплекса является наличие не одного, а нескольких резонаторов, использование ГТД в качестве источника энергии позволяет вести непрерывный бой несколько часов без дозаправки, а с применение дозаправки время возможного ведения боя соизмеримо с ресурсом газотурбинного двигателя и составляет 10 000 час – 20 000 час. Отличие способа ведения боя, заключается в том что при ведении оборонительного боя может быть задействован один или несколько лучей лазера. Естественно, если применяется только один луч лазера, его мощность возрастает. Также бой может вестись с применением ядерного реактора, это не только повысит мощность лазерных лучей, но и на порядок увеличит время активного использования лазера. Дозаправка боевой машины делает время ее работы практически безграничным. Сверхмощная броневая защита и дистанционно-управляемое стрелковое вооружение элементов комплекса делает комплекс практически неуязвимым для всех видов стрелкового оружия, атак самолетов, десанта и артиллерийского и минометного обстрела.
Боевая машина 1 обычно работает без экипажа с использованием систем Глонасс и радиоуправления. В исключительных случаях экипаж может использоваться для перемещения боевой машины 1 и ее обороны от десанта противника. В случае использования ядерного реактора 52 (естественно только при неработающем ядерном реакторе 52), допустимо только кратковременное пребывание около ГТД 18 обслуживающего персонала в специальных защитных скафандрах. Заправщики горючего 2 имеют экипаж по 2 или 3 человека для управления движением, подстыковки и отстыковки шлангов и самообороны. Но в случае гибели всего экипажа заправщики горючего 2 способны автономно вести бой с использованием дистанционноуправляемого стрелкового оружия и перемещаться с применением радиоуправления, принимая максимально возможные меры для спасения материальной части и после смены экипажа для дальнейшего выполнения поставленных задач.
На рис. 13 приведена схема веде6ния боевых действий боевой машины 1 с самолетами противника 108 и показан результат пересечения луча лазера самолета противника, в результате которого он разрезан на две части 109 и 110.
Имея такой патент на изобретение, предприятиям России, изготавливающим такие комплексы, кроме обеспечения обороноспособности страны, будет значительно легче продавать их за рубеж, одновременно можно повысить цену реализации единицы продукции в 5…10 раз, при более низкой себестоимости., так как включение подобного устройства и способа в техническую и рекламную документацию сразу даст отражение в ней повышенной боевой эффективности стрельбы этими продаваемыми комплексами и их абсолютную неуязвимость. При этом можно быстро и легко наладить серийное производство этого нового вида оружия, учитывая передовые позиции СССР в танкостроении и огромное количество танков, произведенных в СССР и РФ. При этом доходы нашего государства от экспорта оружия возрастут в десятки и сотни раз.
Литература:
1. Конюхов В. К., Прохоров A. M., Второе начало термодинамики и квантовые генераторы с тепловым возбуждением, «УФН», 1976, т. 119, с. 541;
2. Лосев С. А., Газодинамические лазеры, M., 1977; Андерсон Д., Газодинамические лазеры: введение, пер. с англ., M., 1979;
3. Бирюков А. С., Щеглов В. А., Газовые лазеры на каскадных переходах линейных трехатомных молекул, «Квантовая электроника», 1981, т. 8, с. 2371;
4. Карлов H. В., Лекции по квантовой электронике, M., 1983. А. С. Бирюков.

Автор статьи Патентный поверенный Болотин Николай Борисович

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.