Ракета-носитель

ракета

Группа изобретений относится к ракетной технике, конкретно к ракетам и жидкостным ракетным двигателям, выполненным по закрытой схеме, с дожиганием газогенераторного газа, к турбонасосным агрегатам и к средствам управления ракетой по крену и предназначено для управления вектором тяги двигателя и ракетой по крену.
Изобретение относится к ракетно-космической технике, а именно к конструкциям многоступенчатых ракет-носителей (РН), состоящих из ракетных модулей (блоков) и предназначенных для выведения полезных грузов на различные околоземные орбиты как непосредственно, так и с помощью дополнительной верхней ступени — блока довыведения, составляющей вместе с полезным грузом головной блок РН.
Известны технические решения, предусматривающие использование в многоступенчатой РН однобаковых ракетных модулей (РМ). Примером применения однобаковых РМ может служить первая ступень ракеты-носителя «Протон» , в которой шесть однобаковых РМ крепятся к центральному топливному баку (ТБ). Жидкостный ракетный двигатель (ЖРД) каждого модуля получает один компонент топлива из бака собственного блока, другой — из центрального топливного бака при помощи межмодульной топливной магистрали (ТМ). Применение такой схемы позволило уменьшить длину ступени и размерность баков, что в свою очередь дало возможность транспортировать ее поблочно по железной дороге. Недостатком РН является невысокое энергомассовое совершенство первой ступе-ни, обусловленное ее конструктивной схемой и типом применяемого топлива. Для того чтобы РН была эффективной, на ней устанавливаются еще две ступени, соединенные с первой по схеме «тандем». Двигатели этих ступеней запускаются в полете, что отрицательно сказывается на надежности носителя. Кроме того, размерность верхних ступеней потребовала установки на них двигателей другого класса тяги, чем на первой, т.е., носитель оказался неунифицированным по ЖРД. Статистика аварий РН «Протон» показывает, что значительная их доля была связана с работой двигателей верхних ступеней.
Известно применение объединенных в связки пар однобаковых блоков — «ОТРАГ»), в котором ракета составлялась из пар однобаковых блоков, имеющих собственный двигатель и единственный топливный бак и применявшая вытеснительную систему подачи топлива. В качестве топлива использовались керосин и концентрированная азотная кислота. Во время полета между блоками в паре происходил обмен недостающими компонентами топлива. Основной недостаток такой схемы — требуемая высокая ступенчатость для компенсации низких энергомассовых характеристик ракеты (до 6 ступеней у носителей «ОТ-РАГ»), результатом чего явилось большое — от нескольких десятков до 600 — количество пар блоков. Следствием такого количества элементов явилась низкая расчетная надежность ракеты. Кроме того, в ракете отсутствовал центральный, стержневой элемент при том, что полезный груз устанавливался тандемно с ней. Отсутствие такого элемента в конструкции РН способствует развитию неустойчивостей в полете и приводит к повышенным вибровоздействиям на полезный груз и саму конструкцию ракеты.
Известен проект технологического ряда РН «Ангара», первая ступень которых имеет в своей основе унифицированные двухбаковые РМ, собранные по схеме «пакет». Один из модулей является центральным, остальные располагаются симметрично вокруг него. В семействе РН «Ангара» все модули имеют высокую степень унификации — используют одинаковые компоненты топлива, однотипные двигатели, топливные баки одинакового диаметра и объема. Это позволяет сократить затраты на разработку ракет-носителей и создание производственной базы.
Но эти носители имеют следующие недостатки. Для повышения эффективности на последнем участке работы первой ступени проводят дросселирование ЖРД центрального РМ (ЦРМ). Это позволяет к окончанию работы боковых ракет-носителей иметь некоторый остаток топлива в баках ЦРМ. Сброс боковых РМ и автономный полет центрального РМ повышают грузоподъемность носителя, но глубокое дросселирование двигателя невозможно без ухудшения его характеристик и уменьшения надежности. Умеренное дросселирование без существенных последствий позволяет добиться относительно небольшого, около 20%, остатка топлива в баках центрального ракетного модуля. Таким образом, связка из нескольких унифицированных блоков оказывается слабоэффективной для запусков искусственных спутников. Установленная на РН вторая ступень — дополнительный ракетный блок, расположенный соосно с центральным ракетным модулем, существенно повышает массу выводимого полезного груза. Но этот блок вносит в ракету носитель два существенных недостатка. Во-первых, запуск его двигателя производится в полете, что не дает возможности в случае невключения остановить пуск. Во-вторых, блок второй ступени не унифицирован с блоками первой ступени, что требует организации для него отдельного производства. Еще одним недостатком носителя является то, что отказ в полете двигателя любого из блоков первой ступени на всем протяжении его работы, за исключением самых последних секунд, неизбежно приводит к невыполнению задачи полета РН. Это вызвано неиспользуемым остатком топлива в аварийном блоке, который не позволяет носителю набрать достаточную скорость.
Известны также РН пакетной схемы, в которой оба компонента из двухбаковых ракетных блоков (модулей) передаются в блоки последующих ступеней в процессе их совместной работы с тем, чтобы к моменту разделения ступеней обеспечить максимальное заполнение баков модулей работающей компоновки. Носитель состоит из нескольких двухбаковых ракетных модулей, собранных по схеме «пакет», и головной части, содержащей полезный груз. Головная часть может также содержать ракетный блок — дополнительную верхнюю ступень. Пакетная компоновка может содержать различное количество РМ, которые являются модулями не менее, чем двух ступеней. Последняя ступень состоит из одного блока, на который сверху устанавливается головная часть. Ракетные модули всех ступеней до предпоследней включительно оборудованы средствами отделения в полете от основной компоновки. Ракета носитель снабжена системой перелива компонентов топлива между модулями, состоящей из межмодульных топливных магистралей, которыми соединены собственные топливные магистрали модулей каждой предыдущей и последую-щей ступеней. На межмодульных топливных магистралях установлены отрывные гидроразъемы и по два отсечных клапана с обеих сторон от них. Кроме того, на каждой собственной топливных магистралях модулей, за исключением модулей первой ступени, выше мест соединения с межмодульными топливными магистралями установлены пусковые клапаны.
Ракета носитель может быть изготовлена в нескольких модификациях, отличающихся количеством боковых РМ, их расположением относительно центрального ракетного модуля, количеством РМ в каждой ступени.
Обычно схема системы перелива компонентов топлива выглядит следующим образом. На топливных магистралях модулей последующей ступени, соединяющих их топливные баки с блоками ЖРД, установлены пусковые клапаны. Между модулями предшествующей и последующей ступеней проложены топливные магистрали, соединяющие топливные магистрали модулей предшествующей ступени с топливными магистралями соответствующего компонента модулей последующей ступени ниже установленных на них пусковых клапанов. На межмодульных топливных модулях в межмодульном пространстве установлены отрывные гидроразъемы, а с обеих сторон от них — отсечные клапаны. Послед-ней ступенью является ЦРМ, из которого топливо не переливается.
Всего в ракете носителе имеется по две межмодульных топливные магистрали на каждый боковой блок.
Многоступенчатая ракета-носитель выполнена модульной конструкции и содержит сколь угодно большое количество ступеней. В дальнейшем описан пример трехступенчатой ракеты-носителя модульной схемы. При выполнении схемы модульной возможно со-брать из одного или двух (трех) модулей сколь угодно большое количество ракет носите-лей любого назначения и с любой энерговооруженностью.
Конкретно описана ракета-носитель на примере трехступенчатой модульной раке-ты (фиг.1…19) Ракета содержит три ступени (фиг. 1 и 2), а именно, центральный модуль первой ступени 1, боковые модули первой ступени 2, центральный модуль второй ступени 3 с боковыми модулями второй ступени 4, центральный модуль третей ступени 5 с боковыми модулями третьей ступени 6 и головную часть 7 (полезную нагрузку). Центральный модуль второй ступени 3 соединен с центральным модулем первой ступени 1 при помощи фермы 8, а центральный модуль второй ступени 3 и центральный модуль третьей ступени 5 соединены фермой 9.

Рис.1
Центральный модуль первой ступени 1 имеет корпус 10, бак окислителя 11, бак горючего 12 и жидкостный ракетный двигатель 13. Боковые модули первой ступени 2 со-держат корпус 14, бак окислителя 15, бак горючего 16.
Все жидкостные ракетные двигатели 13 могут быть выполнены одинаковой конструкции или отличаться только степенью расширения сопла. Боковых ракетных блоков первой ступени 2, может быть применено либо четное число (фиг. 3 и 5) или нечетное (фиг. 4 и 7).

Рис.2Рис.3
В свою очередь, центральный модуль второй ступени 3 имеет корпус 17, бак окислителя 18, бак горючего 19 и жидкостный ракетный двигатель 13. К центральному модулю второй ступени 3 присоединено несколько (не менее двух) боковых модулей 4, содержащих корпус 20, бак окислителя 21, бак горючего 22.
Аналогично, центральный модуль третьей ступени 5 имеет корпус 23, бак окислителя 24, бак горючего 25 и жидкостный ракетный двигатель 13. К центральному модулю второй ступени 3 присоединено несколько (не менее двух) боковых модулей третьей ступени 6, содержащих корпус 26, бак окислителя 27, бак горючего 28.
Боковых модулей третьей ступени 6, второй ступени 4, также как и первой 2 может быть применено либо четное число или нечетное, но наиболее предпочтительный вариант, когда число боковых модулей третьей ступени 6 и второй ступени 4 соответствует числу боковых модулей первой ступени 2. (фиг. 1)
Головная часть 7 прикреплена к центральному модулю третьей ступени 5 узлами соединения 29, выполненными с возможностью отделения в полете, например, пироболтами.
Возможно и более предпочтительно применение схемы ракеты-носителя с отделяемыми боковыми модулями 2 , 4 и 6, которые прикреплены к соответствующему цен-тральному модулю 1, или 3 или 5 узлами соединения 30 (фиг. 1, 8 и 9). Узлы соединения 30 выполнены с возможностью расстыковки в полете, например, применены пироболты. На трехступенчатой ракете-носителе на боковых модулях 2, 4 и 6 установлено не менее двух блоков сопел крена 31.
В этом случае компоновка установки блоков сопел крена 31 может быть выполнена как это указано на фиг. 9…12, т. е. при четном числе боковых модулей 2, 4 и 6 может быть применено только два блока сопел крена 21, а при нечетном – число блоков сопел крена 31 равно числу боковых модулей 2 или 4 или 6. Между всеми центральными модулями 1, 3, 5 и боковыми модулями выполнены магистрали перелива 32, предназначенные для перелива остатков одного из компонентов топлива из боковых модулей 2, 4 и 6 — в центральные модули 1, 3 и 5.
Жидкостный ракетный двигатель 13 (фиг. 3), содержит камеру сгорания 33, выполненную с возможностью качания в двух плоскостях, газогенератор 34 и турбонасосный агрегат 35, подстыкованный к камере сгорания 33 посредством газовода 36, содержащий в свою очередь, турбину 37, насос окислителя 38, насос горючего 39. Турбонасосный агре-гат 35 может содержать дополнительный насос горючего 40.
Выход из насоса горючего 39 соединен трубопроводом 41 с входом в дополнительный насос горючего 40 (при его наличии). Камера сгорания 33 содержит головку 42, цилиндрическую часть 43 и сопло 44. Газогенератор 35 закреплен на камере сгорания 33 при помощи двух шарнирных тяг 45. В верхней части жидкостного ракетногодвигателя 13 установлен узел подвески 46 камеры сгорания 33. Он обеспечивает качание камеры сгорания 33 в одной плоскости относительно центра узла подвески 46 для управления вектором тяги R, с целью управления ракетой-носителем по углам тангажа и рыскания.
Для этого каждый жидкостный ракетный двигатель 13 содержит привода 47, выполненные, например, в виде гидроцилиндров 48, прикрепленных к силовой раме 49, и имеющих штоки 50. На камере сгорания 33, на ее цилиндрической части 43, выполнены верхнее и нижнее силовые кольца 51 и 52, соответственно. К нижнему силовому кольцу 52 шарнирно прикреплены штоки 50 приводов 47. Приводы 47 служат для управления ркетой носителем по углам тангажа и рыскания. К верхнему силовому кольцу 51 прикреплена промежуточная рама 53, к корой крепится узел подвески 46, обеспечивающий кача-ние камеры сгорания 33 в двух плоскостях.
Возможная пневмогидравлическая схема ЖРД приведена на фиг. 3 и 4 и содержит трубопровод горючего 54, подсоединенный одним концом к выходу из насоса горючего 39, содержащим пускоотсечной клапан 55. Выход этого трубопровода соединен с главным коллектором 56 камеры сгорания 33. Выход из насоса окислителя 38 трубопроводом окислителя 57, содержащим пускоотсечной клапан окислителя 58 соединен с газогенератором 34. Также выход из дополнительного насоса горючего 40 трубопроводом горючего 59, содержащим пускоотсечной клапан горючего 60 и регулятор расхода 61 соединен с газогенератором 35. На газогенераторе 35 и на камере сгорания 33 установлены, по меньшей мере, по одному запальному устройству 62.
Двигатель оборудован блоком управления 63, который электрическими связями 64 соединен с запальными устройствами 62 и с пускоотсечными клапанами 55, 60 и 61.
Особенностью двигателя (фиг. 1, 2 и 13) является то, что ТНА 35 жестко прикреп-лен к камере сгорания 33 при помощи газовода 36 и не менее, чем двух шарнирных тяг 45, и камера сгорания 32 имеет возможность поворачиваться относительно центра узла подвески 46 в обеих плоскостях вместе с ТНА 35. Для того, чтобы обеспечить эту возможность на входе в насос окислителя 38 установлен сильфон 65 , а на входе в насос горючего 39 — сильфон 66. Для питания горючим блоков сопел крена предусмотрены трубопроводы отбора горючего 67 с сильфоном 68. Для питания сопел и крена кислым (газогенераторным газом) предусмотрен трубопровод отбора 69 с сильфоном 70. Все модули 1…6 содержат магистрали окислителя 71 и горючего 72. Магистраль окислителя 71 про-ходит через туннель 73 в баке горючего 16 (фиг. 3) и теплоизолирована теплоизоляционным покрытием 74.
На фиг. 4 приведена конструкция жидкостного ракетного двигателя 13. Следует иметь в виду, что не все жидкостные ракетные двигатели могут быть выполнены одинаковой конструкции , одинаковой схемы и размерности.
Узел подвески 46 камеры сгорания 32 ЖРД (фиг. 5) содержит две части: неподвижную 75 и подвижную 76. Неподвижная часть 75 жестко соединена с силовой рамой 49 при помощи крепежа 77 и содержит сферическую часть 78 с внутренней сферической поверхностью.

Рис.4Подвижная часть 76 жестко соединена с промежуточной рамой 53 и содержит сферическую часть 79 с внешней сферической поверхностью. Для обеспечения сборки сферическая часть выполнена из двух деталей 80 и 81, соединенных крепежом 82. Для компенсации допусков и качественной сборки между деталями 80 и 81 установлена про-кладка 83. За счет того, что все детали, описанные выше, образуют сферическое шарнирное соединение возможно качание двигателя 13 во всех плоскостях.
Особенностью турбонасосного агрегата 3 (фиг. 16 и 17) является то, что насос горючего 39 выполнен двухступенчатым, содержащим две независимо (с разными скоростями вращающиеся) ступени 84 и 85, установленными соответственно на внешнем и внутреннем валах 86 и 87. Насос окислителя имеет собственный вал 88. Насос горючего 39 имеет входной патрубок 89, корпус 90, внутри которого установлено устройство для передачи вращающего момента и изменения частоты вращения 91, например, редуктор, и отверстие 92, соединяющее внутреннюю полость 93 корпуса 90 с входной полостью 94. Кроме того, устройство соединено с дополнительным насосом горючего 40, точнее с его центробежным колесом 95. Между валами 86 и 87 выполнен кольцевой зазор 95, для по-дачи горючего во внутреннюю полость 93 для охлаждения устройства для передачи вращающего момента и изменения частоты вращения 91. В качестве устройства для передачи вращающего момента и изменения частоты вращения 91 предложено применить магнитную передачу, содержащую вместо шестерен цилиндры 96 с постоянными магнитами 97, размешенными по окружности с постоянным шагом, что на порядок уменьшит нагрев горючего, охлаждающего для передачи вращающего момента и изменения частоты вращения 91 и уменьшит вероятность возникновения пожара. С этой же целью между внутренним валом 87 и валом 88 выполнена магнитная муфта 98, которая полностью разделяет насосы окислителя 38 и насос горючего 39.

Рис.5
Магнитная муфта 98 может быть выполнена любой конструкции, например, торцовой. В этом случае она (фиг. 17) содержит ведущую и ведомую полумуфты, соответствен-но 99 и 100. Эти полумуфты могут быть выполнены, например, в виде цилиндров 101, на торцовых поверхностях которых установлены постоянные магниты 102. Между полумуфтами 99 и 100 установлена магнитопроницаемая герметичная перегородка 103, которая полностью исключает контакт окислителя с горючим и тем самым исключает аварийный исход при работе ТНА.

Рис.6Рис.8

Система управления по углу крена (фиг. 1, 3 18 и 19) содержит не менее двух блоков сопел крена 31, установленных на корпусах 10. Блоки сопел крена 31 (фиг. 18 и 19) содержит по два, оппозитно установленных сопла крена 104. Блоки сопел крена 31 содержат общий корпус 105 с крепежными элементами 106 и прикреплены к нижним силовым кольцам 107 ракеты-носителя (фиг. 3), установленных внутри корпусов 10 боковых модулей первой ступени 2 и боковых модулей второй ступени 4, а также третьей ступени 6.

Рис.9Рис.10Блоки сопел крена 31 содержат патрубки 108, к которым подведены трубопроводы подачи газогенераторного газа 69, другие концы которого соединен с газоводом 36. В цен-тральной части блоков сопел крена 31 установлены трехходовой кран газа 109 и трехходовой кран горючего 110, к которому подсоединен трубопровод горючего 111, идущий, например, от главного коллектора 56. На трехходовых кранах 109 и 110 установлен общий привод 112 на каждом блоке сопел крена 31. Таким образом, каждые два сопла крена 104, трехходовые краны 109 и 110 и общий привод 112 образуют один узел: блок сопел крена 31.

Рис.7
Сопла крена 104 (фиг. 18 и 19) выполнены с двумя стенками 113 и 114 и коллекторами 115, для прохода охлаждающего горючего. В каждом сопле крена 104 установлены форсунки горючего 116, окислителя 117 и запальное устройство 118. Коллектора 115 соединены с трехходовым краном горючего 109 трубопроводами 119 для переброса горюче-го. Сопла крена 66 имеют неохлаждаемые насадки 120.
Трубопроводы подачи газогенераторного газа 69 содержат сильфоны 70 (фиг. 3) для исключения деформации трубопроводов подачи газогенераторного газа 69 при качании камер сгорания 33. Силовые рамы 49 закреплены на основных силовых кольцах 121 ракеты-носителя (фиг. 3 и 4)..
Жидкостный ракетный двигатель (ЖРД) 13 запускается следующим образом (фиг. 1…19).
В исходном положении все клапаны двигателя закрыты. При запуске ЖРД на горючем с блока управления 63 по электрическим каналам связи 64 подается команда на ракетный клапаны окислителя и горючего (ракетные клапаны на фиг. 1…19 они не показаны). После заливки насосов окислителя 38, насоса горючего 39 и дополнительного насоса горючего 40 открывают пускоотсечные клапаны 55, 58 и 60 (фиг. 3), установленные за насосом окислителя 38, после насоса горючего 39 и после дополнительного насоса горюче-го 40. Окислитель и горючее поступают в газогенератор 34, где воспламеняются при по-мощи запальника 62. Газогенераторный газ и горючее подается в камеру сгорания 33. Горючее охлаждает камеру сгорания 33, проходя через зазор, между оболочками ее сопла 44 и цилиндрической части 43, образующими регенеративный тракт охлаждения (фиг. 4), выходит во внутреннюю полость камеры сгорания 33 для дожигания газогенераторного газа, идущего из газогенератора 34. Воспламенение этих компонентов осуществляется также запальным устройством 62, установленным на камере сгорания 33.
После запуска турбонасосного агрегата 35 (фиг. 4) газогенераторный газ подается из газогенератора 35 в турбину 37, раскручивается ротор ТНА (на фиг. 1…19 ротор не по-казан), давление на выходах насосов 38, 39 и 40 возрастает. Далее по газоводу 36 и через узел подвески 46 газогенераторный газ подается в головку 42 камеры сгорания 33. Часть газогенераторного газа отбирается по трубопроводу отбора газа 69 и далее через трехходовой кран газа 110 поступает в блоки сопел крена 31. Через трехходовой кран 11 в блоки сопел крена поступает горючее.
Для управления вектором тяги R при помощи привода 47 воздействуя штоком 50 на нижнее силовое кольцо 52 поворачивают камеру сгорания 33 относительно точки центра узла подвески 46 на угол 7…110. При этом направление вектора тяги R1 отклоняется относительно первоначального положения R1 продольной оси симметрии камеры сгорания 33 вместе с газогенератором 35 и относительно ракеты-носителя, на которой этот двигатель 13 установлен.
Для управления ракетой-носителем, на которой установлен жидкостные ракетные двигатели 13 по крену подают команду с блока управления 61 (фиг. 3) на приводы 112 (фиг. 18 и 19), при этом включается по одному соплу крена 104 из каждой пары и их ре-активная тяга создает крутящий момент, который через нижнее силовое кольцо ракеты 122 передается сначала на сопло 43, потом — на силовую раму 49 и далее на основное силовое кольцо (фиг. 14) и на корпус 10 бокового ракетного блока первой ступени 2 ракеты-носителя (то же самое касается боковых ракетных блоков второй и третьей ступеней 4 и 6).
После разъединения узлов соединения 30 (фиг. 8) боковые ракетные блоки первой ступени 2 отбрасываются. Далее полет выполняет только центральный ракетный блок первой ступени 1, при этом управление по крену осуществляют блоки сопел крена 31, установленные на его корпусе 7.
Следующим этапом отделяется центральный модуль первой ступени 1, для этого отсоединяется ферма 8. Потом запускаются двигатели 13 центрального модуля второй ступени 3 и боковых ракетных блоков второй ступени 4. Потом отбрасываются боковые ракетные блоки второй ступени 4 и полет продолжает центральный модуль второй ступе-ни 3 с вышестоящей третьей ступенью 5 и головной частью 7. (Фиг. 9). Потом отсоединяется ферма 9 и отстыковывается центральный модуль второй ступени 3 , запускаются все двигатели 13 центрального модуля 5 и боковых модулей 6 и т. д. Перед отстыковкой боковых модуле 2, 4 и 6 излишки одного из компонентов топлива, в данном примере — окислителя переливаются в центральные модули 1, 3 и 5 для дальнейшего применения.
Применение изобретений позволило:
1. Обеспечить надежное управление вектором тяги ЖРД и управление трехступенчатой ракетой-носителем по углу крену за счет применения не менее двух блоков сопел крена, содержащих по два оппозитно установленных сопла крена и рационального крепления их корпусов на ракете на нижних силовых кольцах.
2. Обеспечить надежность работы турбонасосного агрегата за счет уменьшения нагрева горючего, охлаждающего устройство передачи крутящего момента и изменения скорости вращения.
3. Повысить пожаробезопасность ТНА и ракеты в целом, полностью исключив контакт горючего и окислителя за счет применения в ТНА магнитной муфты между насосами окислителя и горючего.
4. Значительно повысить надежность работы системы управления ракетой по крену за счет применения двух трехходовых кранов: газа и горючего и общего привода для них. Такая конструкция предотвращает невключение одного из сопел крена, например, вследствие отказа пускоотсечного клапана горючего.

Литература:
1. С.П.Уманский «Ракеты-носители. Космодромы», Москва, издательство «Рестарт +», 2001 г.
2. «Космонавтика», энциклопедия, 1985 г., Москва, издательство «СЭ», — «ОТРАГ»
3. Журнал Новости Космонавтики» №3, 1999 г., с.48.
4. Патент США №5143328 от 01.09.1992, B 64 G 1/00, B 64 G 1/40.

Автор статьи: Патентный поверенный РФ Болотин Николай Борисович

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.